S

93102

For Supervisor's use only

NEW ZEALAND QUALIFICATIONS AUTHORITY
MANA TOHU MĀTAURĀNGĀ Q AOTFARQA

Scholarship 2007 Chemistry

2.00 pm Saturday 24 November 2007 Time allowed: Three hours Total marks: 40

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

Answer ALL questions.

A periodic table is provided on page 2 of this booklet.

Write all your answers in this booklet.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–26 in the correct order.

You are advised to spend approximately 35 minutes on each question.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

PERIODIC TABLE OF THE ELEMENTS

1 2 2 2 2 2 2 2 2 2	d)			. c		•	0			∞		4)			_	7											
Atomic Number 1 Molar Mass/g mol ⁻¹ IS IS <th col<="" td=""><td>, </td><td>4.</td><td>10</td><td>7 S</td><td>18</td><td>Ā</td><td>40.</td><td>36</td><td>X</td><td>83.</td><td>54</td><td>X</td><td>13</td><td>98</td><td>R.</td><td>22.</td><td></td><td></td><td></td></th>	<td>, </td> <td>4.</td> <td>10</td> <td>7 S</td> <td>18</td> <td>Ā</td> <td>40.</td> <td>36</td> <td>X</td> <td>83.</td> <td>54</td> <td>X</td> <td>13</td> <td>98</td> <td>R.</td> <td>22.</td> <td></td> <td></td> <td></td>	,	4.	10	7 S	18	Ā	40.	36	X	83.	54	X	13	98	R.	22.										
Atomic Number I Molar Mass/g mol-1 I Molar Mass/g mol-1 <th <="" colspan="8" td=""><td></td><td>17</td><td>6</td><td>19.0</td><td>17</td><td>C</td><td>35.5</td><td>35</td><td>Br</td><td>79.9</td><td>53</td><td>ı</td><td>127</td><td>85</td><td>At</td><td>210</td><td></td><td></td><td></td></th>	<td></td> <td>17</td> <td>6</td> <td>19.0</td> <td>17</td> <td>C</td> <td>35.5</td> <td>35</td> <td>Br</td> <td>79.9</td> <td>53</td> <td>ı</td> <td>127</td> <td>85</td> <td>At</td> <td>210</td> <td></td> <td></td> <td></td>									17	6	19.0	17	C	35.5	35	Br	79.9	53	ı	127	85	At	210			
2 4 8 9.0 12 Molar Mass/g mol-1 1 8 1.0 Molar Mass/g mol-1 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		91	∞	O 16.0	16	S	32.1	34	Se	79.0	52	Te	128	84	P_0	210											
24. Be 9.0		15		Z 4	15	Ь	31.0	33	As	74.9	51	$\mathbf{S}\mathbf{b}$	122	83	Bi	209											
24 Be 9.0 Ca Sc Ti A5.0 Sr 44 Sr 7		14	9	C 12.0	14	Si	28.1	32	Ge	72.6	50	\mathbf{Sn}	119	82	Pb	207											
24. Be 9.0 Ca Sc Ti V Cr Mn Fe Co Ni Cou 108 Sr V Zr Nb Mo 75 Se 71		13	5	B	13	W	27.0	31	Са	69.7	49	In	115	81	П	204											
24 4 Be 9.0 Ca Sc Ti V Cr Mn Fe Co Ni Sr 44.1 45.0 47.9 50.9 52.0 54.9 55.9 58.9 58.7 58.7 58.8 58.7 58.8 58.7 58.8 58.7 58.8 58.7 58.8 58.9 58.7 58.8 58.9 58.7 58.8 58.9 58.9 58.9 58.9 58.9 58.9 58.9							12	30	Zn	65.4	48	Cd	112	80	$_{ m Hg}$	201											
2 4 Be 9.0 12 Mg 24.3 24.3 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 30 40 47.9 50.9 52.0 54.9 55.9 58.9 38 39 40 41 42 43 44 45 45 38 39 40 41 42 43 44 45 38 39 40 41 42 43 44 45 38 39 1.2 73 74 75 76 77 7 38 39 91.2 92.9 95.9 98.9 101 103 36 103 104 105 106 107 108 109 88 88 80 103 104 105 263 264 265 268 88 80 80 91.2 52.0 52.0 54.9 56.9 88.9 101 80 192 80 80 91.2 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52							II	29	Cu	9.69	47	\mathbf{Ag}	108	79	Au	197											
2 4 Be 9.0 Ca Sc Ti V Cr Mn 40.1 45.0 47.9 50.9 52.0 54.9 Sr V Zr Nb Mo Tc Sc		10l ⁻¹					10	28	Z	58.7	46	Pd	106	78	Pt	195											
2 4 Be 9.0 Ca Sc Ti V Cr Mn 40.1 45.0 47.9 50.9 52.0 54.9 Sr V Zr Nb Mo Tc Sc		∕ass/g n)				6	27	Co	58.9	45	Rh	103	77	Ir	192	109	Mt	268								
2 4 Be 9.0 22 24.3 3 4 50 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20		Molar 1					8	26	Fe				101	92	Os	190	108	Hs	265								
2 4 Be 9.0 22 24.3 3 4 50 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	1 H	1.0					_	25	Mn	54.9	43	Тс	6.86	75	Re	186	107	Bh	264								
2 Be 9.0 Mg 3 4 24.3 3 4 20 21 22 Ca Sc Ti 40.1 45.0 47.9 38 39 40 Sr Y Zr 87.6 88.9 91.2 56 71 72 Ba Lu Hf 137 175 179 88 103 104 Ra Lr Rf 226 262 261	umber						9	24	Cr	52.0							106	$\mathbf{S}_{\mathbf{g}}$	263								
2 Be 9.0 Mg 3 4 24.3 3 4 20 21 22 Ca Sc Ti 40.1 45.0 47.9 38 39 40 Sr Y Zr 87.6 88.9 91.2 56 71 72 Ba Lu Hf 137 175 179 88 103 104 Ra Lr Rf 226 262 261	Atomic N						5	23	>	50.9				73	\mathbf{La}	181	105	Db	262								
2 Be 9.0 12 Mg 24.3 20 Ca 40.1 38 Sr 87.6 56 Ba Ba 137 88 Ra Ra	,						4		Ţ		40	\mathbf{Zr}	91.2	72	Ht	179	104	Rf	261								
2 Be 9.0 12 Mg 24.3 Mg 24.3 20 Ca 40.1 38 87.6 56 Ba 137 137 88 Ra Ra							3	21	Sc	45.0	39	Y	6.88		Lu	175	103	Lr	262								
1 3 Li 6.9 11 Na 23.0 19 K 39.1 37 Rb 85.5 Cs Cs 133 87 Fr 223		2		Be	12	Mg				40.1	38	\mathbf{Sr}	9.78	56			88	Ra	226								
		I	3	F1	11	Na	23.0	19	K	39.1	37	Rb	85.5	55	C	133	87	Fr	223								

	57	58	59	09	61	62	63	64	65	99	29	89	69	70
Lanthanide	La	Ce	\Pr	Nd	Pm	Sm	Eu		Tb	Dy	Ho	Er	Tm	ΛP
Series	139	140	141	144	147	150	152	157	159	163	165	167	169	173
	68	06	91	92	93	94	95	96	97	86	66	100	101	102
Actinide	Ac	Th	Pa		Np	Pu	Am	Cm	Bk	Cţ	Es	Fm	Md	No
Series	227	232	231	238	237	239	241	244	249	251	252	257	258	259

You have three hours to complete this examination.

Assessor's use only

QUESTION ONE (8 marks)

(i)	"Chemical reactions occur to enable atoms to obtain full outer electron shells or
(1)	octets".
	Eg hydrogen and chlorine gases react spontaneously to form hydrogen chloride.

"Successive ionisation energies for any atom increase because when an electron is (ii) removed from an atom or ion, the remaining electrons receive an extra share of the attraction from the nucleus." Eg the first three ionisation energies for sodium are: $Na(g) \rightarrow Na^+(g) + e^- \qquad \Delta H = 502 \text{ kJ mol}^{-1}$ $Na^{+}(g) \rightarrow Na^{2+}(g) + e^{-} \qquad \Delta H = 4569 \text{ kJ mol}^{-1}$ $Na^{2+}(g) \rightarrow Na^{3+}(g) + e^{-} \Delta H = 6919 \text{ kJ mol}^{-1}$

-

(b) Silane (SiH₄) ignites spontaneously in air to produce H₂O and SiO₂ (a giant covalent lattice with single bonds).

Assessor's use only

Use the table below to compare the heat of combustion of silane with that of methane, and discuss whether these values account for the differing reactions of these two compounds in air.

Bond	Bond enthalpy / kJ mol ⁻¹
С–Н	413
C–O	358
C=O	804
Si–H	323
Si–O	466
О–Н	463
O=O	498

-	

QUESTION TWO (8 marks)

Assessor's use only

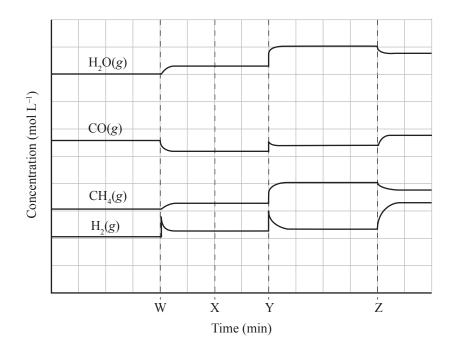
(a) A sample of steel contains 10% nickel and 70% iron by mass.

0.200~g of this steel is dissolved completely in acid and the solution is diluted to 200~mL. The iron is then treated and separated by precipitation as iron(III) hydroxide.

Calculate the separate concentrations of iron and nickel ions in the 200 mL of solution. Then using the solubility product values below, determine the pH range over which iron can be precipitated so that no more than 0.100% of the iron remains in solution, while none of the nickel(II) hydroxide precipitates.

$K_{\rm s} (\text{Fe(OH)}_3) = 2.79 \times 10^{-39}$	$K_{\rm s} \left(\text{Ni(OH)}_2 \right) = 5.48 \times 10^{-16}$	

(b) The concentrations of the species present in a system at equilibrium can be altered by applying a variety of stresses to the system.


Assessor's use only

Typically these involve either

- increasing or decreasing pressure (by changing the total volume of the system or by adding an inert gas)
- addition or removal of heat
- addition or removal of one (or more) of the reactants or products.

The graph below shows changes in the concentration of the species present in a system involving the following reaction at equilibrium. The reaction is endothermic in the forward direction.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

Discuss the nature of the stresses applied to the system at positions W, X, Y and Z, and how these stresses result in the changes in the concentrations of the species present in the system.

QUESTION THREE (8 marks)

Assessor's use only

(a) Primary chloroalkane molecules undergo substitution of the Cl⁻ by CN⁻ when warmed with potassium cyanide in ethanol. The organic molecule formed can then be warmed with dilute sulfuric acid to convert it into a carboxylic acid.

RCl
$$\xrightarrow{\text{KCN/ethanol}}$$
 RCN $\xrightarrow{\text{H}_2\text{SO}_4(aq)}$ RCOOH

Compound A, C₅H₁₁OCl, is an organic molecule with no branching in the carbon chain.

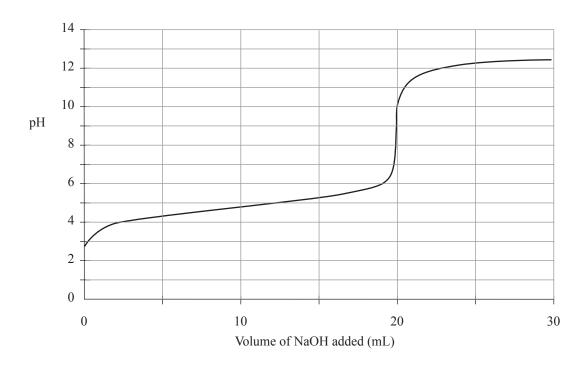
Reaction of Compound **A** with a solution of acidified potassium dichromate produces compound **B**, C_5H_9OCl . Compound **B** does not have any stereoisomers and has no reaction with Tollens' reagent.

When compound **A** is reacted with concentrated sulfuric acid it produces Compounds **C**, **D** and **E** (C_5H_9Cl). Compound **C** does not have stereoisomers, but Compound **D** and Compound **E** are geometric isomers of one another.

Compound **A** is reacted with potassium cyanide in ethanol to produce an organic compound that is warmed with dilute sulfuric acid to give compound \mathbf{F} ($C_6H_{12}O_3$). On further heating with concentrated sulfuric acid a sweet smelling liquid, compound \mathbf{G} ($C_6H_{10}O_2$) is produced.

Draw the structural formulae for compounds A - G, and justify your answers.

data were collected a	bout the fiquids.
Time for 1 drop of e	each sample to completely evaporate re:
Sample	Time (s)
A	135
В	more than 1200
C D	65 30
E	20
Solubility of glucos	se, $C_6H_{12}O_6$, in each liquid (at room temperature):
	e in the greatest amount.
	a small amount of glucose.
	ess glucose than A and C.
D dissolved almost	no glucose.
Miscibility (ability	of two liquids to mix):
	miscible, forming two distinct layers.
A, B, C and E were	re miscible with one another.
structure and bonding	ontents of each bottle, and justify your answer by relating g of the compounds.


QUESTION FOUR (8 marks)

(a)

Assessor's use only

The titration curve below shows the change in pH as $0.100 \text{ mol } L^{-1} \text{ NaOH}(aq)$ is added to 10.0 mL of ethanoic acid, $\text{CH}_3\text{COOH}(aq)$.

Titration Curve

A second titration is carried out in which $0.100 \text{ mol } L^{-1} \text{ NaOH}(aq)$ is added to 10.0 mL of $0.200 \text{ mol } L^{-1}$ hypobromous acid, HOBr, a weak acid with p K_a (HOBr) = 8.69.

Calculate the initial pH of the HOBr solution and the pH at the equivalence point.

(i)	
(1)	Sketch the second titration curve on the graph opposite (from 0.0 mL NaOH to addition of 25.0 mL of NaOH).
	of 25.0 mL of NaOH).
	of 25.0 mL of NaOH).
(i) (ii)	of 25.0 mL of NaOH).
	of 25.0 mL of NaOH).

(b)

cur	plain, in terms of the species present in solution, why the pH of the HOBr titration we halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the ne point is acidic.
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the
cur	ve halfway to equivalence point is basic, while the pH of CH ₃ COOH curve at the

5.0 mL of 0.100 mol L 1 NaOH(aq) is added to a mixture of 10.0 mL of 0.200 mol L HOBr(aq) and 10.0 mL of 0.200 mol L $^{-1}$ CH $_{3}$ COOH(aq). Consider the relative strengths of the acids and calculate the pH of the resulting mixture.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
$HOBr(aq)$ and 10.0 mL of 0.200 mol L ⁻¹ $CH_3COOH(aq)$.		
		5.0 mL of 0.100 mol L ⁻¹ NaOH(aq) is added to a mixture of 10.0 mL of 0.200 mol L ⁻¹
Consider the relative strengths of the acids and calculate the pH of the resulting mixtu		$HOBr(aq)$ and 10.0 mL of 0.200 mol L $CH_3COOH(aq)$.
	,	Consider the relative strengths of the acids and calculate the pH of the resulting mixtu

QUESTION FIVE (8 marks)

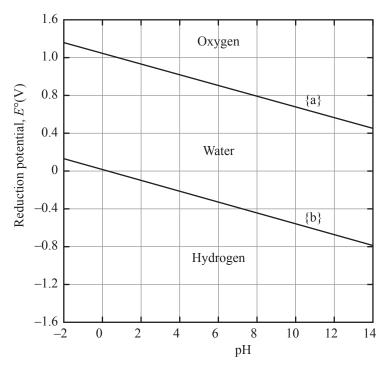
(i)

Assessor's use only

(a) Glycerine, a mixture of glycerol and water, weighing 100.0 mg was treated with 50.0 mL of 0.0837 mol L⁻¹ Ce⁴⁺ solution in 4 mol L⁻¹ HCl at 60°C for 15 minutes. The excess Ce⁴⁺ solution needed 12.11 mL of 0.0448 mol L⁻¹ iron(II) ammonium sulfate to reach the end point.

The unbalanced equations are:

(glycerol) = 92.6	entage glycerol 0 g mol ⁻¹	227 427 827 4422	ie swiipie.	


Discuss titration	s why a back titration is used and compare the errors introduced in a bank with a direct titration.	ack

The lines on the diagram below show the variation in reduction potential of water with acidity (b) for the following reactions.

Assessor's use only

Line {a}:
$$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(\ell)$$

Line {b}:
$$2H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

Use the information from this diagram to answer the question below.

Discuss how the vanadium species present in aqueous solution (saturated with oxygen) changes as the pH is raised from 0 to 14.

$$VO_2^+ + 2H^+(aq) + e^- \rightarrow VO^{2+}(aq) + H_2O$$
 $E^{\circ} = +1.00 V$

$$E^{\circ} = +1.00 \text{ V}$$

$$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow V^{3+}(aq) + H_{2}O$$
 $E^{\circ} = +0.34 \text{ V}$

$$E^{\circ} = +0.34 \text{ V}$$

Extra paper for continuation of answers if required. Clearly number the question.

Question number	

Extra paper for continuation of answers if required. Clearly number the question.

Question number	

Extra paper for continuation of answers if required. Clearly number the question.

Question number	

For Assessor's Use Only	
Question Number	Marks
Q1	(8)
Q2	(8)
Q3	(8)
Q4	(8)
Q5	(8)
TOTAL	(40)

For Assessor's Use Only.

Keep Flap Folded In.